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SUMMARY

Considering various lifting systems, namely: simple or cruciform wing and
wing-body system, the author presents the theory of such wing systems in
supersonic regime, beginning with the first approximation based on the
linearisation of equations (and hence, the assumption of small disturbances).
Further, the author deals with the phenomenon of the flow separation at
the leading edges, corresponding to thin wings with subsonic edges. Some
theoretical considerations are made on wings with curved leading edges. In
the case of wings with supersonic edges, the author also extends the theoretical
considerations to the moderate-hypersonic regime. Theoretical and experi-
mental values are compared.

SYMBOLS

U, freestream velocity
a,, speed of sound in the free stream

Uy
M, =- Mach number of the free stream
a

B=,/(M}—1)= cot u
1 semi-angle of the Mach cone
t time
Xy, X5, X3 cartesian co-ordinates
¥,z co-ordinates in the physical plane x, =1, defined by relations
(3
¥, j co-ordinates in the auxiliary plane, defined by relations (5)
r=v+j3 complex variable
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X auxiliary plane defined by relation (15) or (18)
. co-ordinates of a point situated on the curved leading edge of
the wing
¢(xy, x5, X5, 1)  velocity potential
u, v, w components of the disturbance velocity upon Ox,, Ox,, Ox;
U, ,(r) axial disturbance velocity function
Apgs Cogs Dogr Grgs Hyay A, C - constants included in the expression of the
axial disturbance velocity
t stream deflection with respect to the direction of the free
stream
o incidence of the undisturbed stream U, with respect to the
plane Ox x,
fincidence of the undisturbed stream U, with respect to the
plane Ox,x,
¥ yaw angle
[=cot y dimensionless semi-span of the triangular wing
pressure coeflicient
C, lift coefficient
C, wave drag coefficient
y ratio of specific heats
K unitary similarity parameter defined by relation (36)

'at

. INTRODUCTION

Modern supersonic aircraft existing at present cover a wide range of
incidence and Mach number; the aircraft under study and construction or
experimentation can reach considerable Mach numbers.

In the following we shall try to include in a unitary presentation the
conditions of motion over this whole range of incidence and Mach number,
determining the pressures and the overall forces for various systems of
lifting wings.

These lifting systems can be either simple or complex, i.e., wing alone,
cruciform wing, wing-body system etc.: we shall first approach the study of
the simple wing which constitutes the starting point of all applications and
then extend the results obtained to more complex systems.

In view of the complicated geometry of the surface of the aircraft wing, it
is impossible to obtain a rigorous and general solution of the problem without
preliminary approximations. Consequently we shall proceed by stages, first
considering the wing thickness and its variation over the whole surface as well
as the wing incidence with respect to the free stream U, to be sufficiently
small in order to neglect certain secondary order terms in the general equations
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and reach, through their linearisation, the theory of small disturbances, which,
as is known, has given remarkable results surprisingly well confirmed by
tests, of course within the limits of this simplifying assumption.

The first stage of investigation, characterised by the method of small dis-
turbances, cannot represent the actual phenomenon once the wing incidence
exceeds a certain limit, even at small Mach numbers, or in the case when the
wing thickness and incidence, as well as the Mach number of the free stream,
assume large values. Consequently we have to take account of the effect of
certain special phenomena which appear under these conditions, as for
instance, the flow separation at the subsonic leading edges, as well as the flow
conditions in moderate-hypersonic regime, where certain terms considered to
be secondary ones in the first stage, now become important.

Other extensions, as for instance Newton's impact theory or the theory of
ionized and rarified gases, are not included in our paper.

In order to establish better the application limits of the various theories
and formulae, we give below an indicative scale of motion ranges in terms of
the classic similarity parameter K= M, 7, where M, is the Mach number of
the free stream (M, >1) and t is the flow deflection with respect to the
initial direction:

M , t <1, the regime of small disturbances,
M 1~ 1-2, the moderate-hypersonic regime.

Although this delimitation is only indicative, we shall try to substantiate
theoretically all stages that appear around the wing over a wide range of
incidences and Mach numbers, giving the following succession and aspects
of the motion:

— supersonic regime, under the assumption of small disturbances, at small
incidences and Mach numbers ;

— supersonic regime for thin wings, at any incidence but small Mach
numbers, with flow separation at the subsonic leading edges:

— effects of curved edges;

— supersonic-hypersonic regime, at large incidences and Mach numbers.

All these aspects are founded on the same basic theoretical considerations,
as it will be shown below.

2. WING THEORY UNDER THE ASSUMPTION OF
SMALL DISTURBANCES

It is known that, under the assumption of small disturbances, by making
the allowed approximations, the motion equations lead to the following
linearised equation of the velocity potential which will be denoted by
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¢(x,, x5, x5, 1) and which is a function of the co-ordinates x,, x,, x5, and of
the time ¢:

(1)
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ot
where a,, is the speed of sound under the conditions of the free stream, while
B is given by the relation

B=J(Mi—l)=c0t,u (2)

1 being termed the Mach angle.

In the steady motion, the second member of the above equation is equal to
zero and for certain wing shapes we can easily obtain the respective solutions.

It can be asserted that all problems arising in the case of moderately thick
wings have been practically solved. Indeed, the linearised equation (1) allows
us to separate the effects of the thin wing which form its frame, from those
of the wing of symmetrical thickness around this frame, which together
constitute the wing proper.

As mentioned above, all practical problems arising in the case of wings
of any planform and any variation of the normal dimensions can be solved
through the method of doublets and sources. Proceeding in this manner one
encounters difficulties only in the effective calculus and laborious integrals.

By means of the method of homogeneous functions initiated by Beshkine'"’
and Germain‘'® and developed under various aspects in various countries and
also at the Institute of Fluid Mechanics in Bucharest, one can define the
conical motions around the wing, which imply however the condition that the
leading edges be straight. Nevertheless, through the extension made by us to
wings with curved leading edges, this latter method can now cover any
planforms used for modern supersonic aircraft.

Let us refer the wing to the three rectangular axis system Ox;x,x;;
further, considering the wing to be practically contained in the plane Oxx,
(Fig. 1a) and introducing the notations

X, X3

Vs =z 3)

Xy X1

which will define a plane Oyz, termed physical plane (Fig. 1b), normal to the
axis Ox,, the components of the disturbance velocity, u, v, w, will be set in
terms of x,, y, z. We shall particularly study the construction of the axial
disturbance velocity u, since this one is explicitly included in the formula of
the pressure coefficient:

u

an
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The solution of u in terms of x,, y, z, is not easily obtained: therefore we
introduce a change of variables, similar to that of Busemann, defined by the
relations

y z/[1-B*(y*+2%)
P=r——5g, §=- ! s J (3)
1—B*z 1-B2;
which define an auxiliary plane Ovj (Fig. I¢). In this plane, the axial distur-
bance velocity will be set in the form

u=x7"tu,_(v,33=x17""Re#,_,(x) (6)

in which u,_(y, ;) is a harmonic function representing the real part of the
analytical function %, _,(v), termed axial velocity function, of complex variable

r=vy+ij 0

In a section x,=const, the angle T made by the tangent to the profile in
this section with the undisturbed velocity U, represents the flow deflection,
while the downwash on the wing, which also represents one of the boundary
conditions, can be expressed by a homogeneous polynomial of order (n—1):

n—1 n—1
-1-9 q_ rr 1
Z “n 17qu \ Z “n l—qq (8)
q=0 q=0
in which w,_, _, , are constant coefficients. In terms of these coefficients, as

well as of parameters /, and /, (Fig. 1),
[y =coty,, [,=coty, 9)

the expression of %, _, is accurately determined for all three positions of the
wing with respect to the Mach cone (Fig. 1) and it can be put in the following
general form which will be later considered for other extensions of this theory

Wy = Uy (1,11, 1) (10)

In our earlier paper we have given these general expressions for all ordinary
polygonal forms, triangular wings, trapezoidal wings or delta wings, all of
which derive from the following formulae:

/j/ =
"t J =+ 1)],5 Z

(11)
corresponding to the thin triangular wing having both leading edges subsonic

(Fig. la, u=p,), from which the delta wing also results by putting /, =/,=1
(Fig. 2a);

1+ Br -y || Gt R 4BY |
Un-1 = A + ! e H 1 |2
" [B([ - 1)] ‘fzo 1 o \/[( [ +BI]. )(!2 -f !.)jl(rgu mll ( )
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corresponding to the thin wing having one subsonic leading edge and one
supersonic (Fig. la, =), from which the trapezoidal wing is also obtained
by setting /,— oo (Fig. 2b);

_ (1+BIl)(1—- BL) n=l
)//ﬂ'l = cosh 1\/[ 73([ —[) ]Z qu!l‘

q=0

- (1+BI,)(1+ Br) "2 —-B%r 2
oo™ [ LR |, 6w [ ], e
(13)

corresponding to the wing of symmetrical thickness, from which the thin
wing with supersonic leading edges also derives, by setting B/,>1 and
Bl,>1 (Fig. la, p=p,).

It should be noticed that all these formulae can also be appiled to a simple
delta wing when it is yawed, in which case it can have all the three positions
specified in Fig. la. As a matter of fact, we can apply one or several of the
above formulae to any polygonal wing (Fig. 2¢).

In a similar manner we can find analogous expressions for the downwash w,
when the pressures (or the axial velocity u) are given. From the expression
of w we deduce the wing surface. In our papers we have termed this operation
indirect problem.

The above results can be applied similarly to the harmonic oscillating
motions of low frequency of a wing. In such a case, the potential
¢ (x,, x5, x5, 1) can be in the form

2
qa(.\.l‘_\.z! _\.3‘1) = b.'j eil’trlr+k.t|\(p('\.l‘_\-2, '\73)" (A — _ﬂi ] +B ) (14)
Uy B*
where ¢(x,, x,, x3) is independent of time and is called reduced potential.
This one behaves like a potential in the steady motion, since the solutions
are prefectly well known, having been deduced from this motion for which
all current cases are indicated above.

3. CONSIDERATIONS ON THE THEORY OF COMPLEX
LIFTING SYSTEMS

The wing theory based on the assumption of small disturbances can be
applied easily to the complex lifting systems which are in current use in the
construction of modern supersonic aircraft and rockets. Thus we can mention
the cruciform wing (Fig. 3a) or tail (Fig. 3b), which derive from the first one
as well as wing-body systems (Fig. 3¢) or cruciform wing-body (Fig. 3d).
We shall not make particular enlargements on these problems but, in order
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FiG. 3 — Different complex lifting systems. (a) Cruciform
wing. (b) Horizontal and vertical tail. (¢) Wing-body system.
(d) Cruciform wing-body system

to illustrate the unitary method we have employed, we shall give below several
simple examples.

Cruciform wing

Consider the case of the symmetrical cruciform wing, where the wing
proper and the normal plate have constant incidences, two by two being
equal and of opposite sense, the wing having the incidence « on the right-hand
side portion and —« on the left-hand side one, and the plate having the lateral
incidence, f# on the upper portion and —f on the lower one. The wing is
defined by the length /, and the plate by the height 4 (Fig. 4a).

For the study of this wing system we have used the same transformation (5)
as for the wing alone, which leads to the configuration given in Fig. 4b, as
well as to an additional conformal transformation:

h2
2l 2 2=7 <N
X*=z"+17%, (b I_Bzhz) (15)

which reduces the cruciform wing to a wing alone in the new plane (Fig. 4c).
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FiG. 4 — Cruciform wing. (a) Wing ensemble and physical plane (x, =1).
(b) Auxiliary plane r. (¢) Auxiliary plane X

[ The behaviour of the axial disturbance velocity in the vicinity of the leading
edge of the plate and wing is analogous to that in the vicinity of the leading
edges of the wing alone. Further one can show that the axial velocity function
4 1s real on the wing and on the plate.

In the X-plane, the calculations are similar to those performed in the case of
a wing alone and, therefore, the solution is easily to be found. If we then
return to the initial plane r, we find for the axial velocity,

 AgtAn?
VI =)0 +1)]

(16)
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in the case when the leading edges of the wing and plate are subsonic
(Bl<1, Bh<1), and

1—-B%? .y [ @+p3)(1-B%?)
in the case when the leading edges of the wing are supersonic (B/> 1), while
those of the plate are subsonic (Bh<1). The constants in these relations are
determined in terms of «, 3, /, h, according to the known patterns. The cases
when the wing and plate have more complicated variations of incidence can be
approached in a similar manner, but the restricted space prevents us from
enlarging upon this problem. We have wanted only to point out the fact that

on the basis of the same theory and unitary method, one can also find the
solutions of this more complex problem.
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Fia6. 5 — Wing-body system. (a) Wing ensemble and physical plane (x, =1).
(b) Auxiliary plane r. (¢) Auxiliary plane X
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Wing-conical body system

Consider now, also for reasons of simplicity, the wing-conical body system
given in Fig. 5a.

It is to be noticed that, under the assumption of small disturbances, from
the flow around this complex system one can separate the axisymmetric flow
around the body alone without incidence.

Dealing further with the remaining motion resulting from this separation,
one can demonstrate that the axial velocity function is real on the wing and
body. Establishing for this function the boundary conditions as well as the
singularities entailed by it, the problem can be easily approached in an
auxiliary plane X, defined, with respect to the r plane (Fig. 5b), by the con-
formal transformation

~
o

X=r+ (18)

- |

in which the problem is being reduced to the study of a fictitious wing alone
having conical variable incidence (Fig. 5¢).

In this manner one can approach the various cases of the thin wing or of the
wing of symmetrical thickness fitted with conical body. For exemplification
we shall give, in the r plane, the expression of the axial velocity in the simple
case of a thin delta wing with subsonic edges (B/<1), the wing having a
different incidence from that of the body:

A
T+ DO

——2((— 1—(. cosh™! U+(‘)2”_.£)£t12
n T 202 +c*)xr—c)?

2¢C ¢ o TU+e)*U+ o2+ 1)) ic*C
i R PR i L WA, |
- ( +§) cos \./[ e+ | r

A=A

where 4 and C are constants.

When the incidence of the body axis is equal to that of the wing, then
C=0 and the above expression reduces to the first term in the right-hand side.
We shall further remark that in the same manner one can approach more
complex problems of wing-body systems; we confine ourselves however to
this simple example, which has been given in order to indicate the method of
approach in various applications.
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4. THEORY OF THIN DELTA WINGS ON TAKING ACCOUNT
OF THE FLOW SEPARATION AT THE SUBSONIC
LEADING EDGES

As long as the attack angle « of a flat delta wing (or, better, the ratio «//) is
small, the pressures on the wing abide, to a certain degree, by the laws
established under the assumption of small disturbances, with the exception
of the points lying in the immediate vicinity of the subsonic leading edges,
where the actual velocity is however finite and not infinite, as it would result
from the theory. This fact is due to the phenomenon of the flow separation
at the subsonic leading edges of the thin wing.

Once the ratio a// increases, the effect of this flow separation also increases,
becomes more prominent and assumes the shape of a layer of vortices under
the form of cornet, with a more concentrated nucleus at a certain point of
abscissa ¢ and ordinate ¢ (Fig. 6a). In this problem M. Roy obtained many
interesting results®** 3*), The motion remains conical and it can be treated
by using the same method of the conical motions. To this effect, an interesting
study has been carried out with a good approximation for slender wings
(BI<1) by Mangler and Schmidt‘®®, which, however, cannot be applied to
larger values of Blin the interval 0< B/<1.

'S

[

] .

F1G. 6 —Thin delta wing with flow separation at the subsonic leading edges.

(a) General sketch. (b) Photograph of cornets and vortex nucleus according

to L. C. Squire®®® (with the permission of the Controller of Her Britannic
Majesty's Stationery Office)




Elie Carafoli 253

Consequently, on watching the scheme given in Fig. 6, instead of the actual
motion due to this configuration of the vortex cornet, we shall rather consider
its effect, namely, that of inducing an additional downwash, that is, an
additional non-homogeneous vertical stream which alters the whole flow on
the wing surface and hence, a finite velocity results at the edge. In fact the
phenomenon is far more complex, but it can be schematised in its effects for
simple computation.

Considering therefore the effect of vortices, the wing scheme under these
simplifying conditions will be composed of the following three component
wings, each of which can be treated separately, by applying the method used
in the conical motions proper:

1. A thin wing having a conical variation of incidence, from which a finite
velocity should result at the leading edges and which should render in a
qualitative manner the effect of the vortex system on the upper surface. On
the lower surface of this thin wing the axial disturbance velocity is equal and
of opposite sense to that on the upper surface. The pressures are equal and of
opposite sense on the two surfaces.

In order to avoid an infinite velocity at any point of the wing, the incidence
variation at the wing extremity will be considered continuous and for the
sake of simplicity, will be substituted by a corresponding source distribution
which connects the source intensity g with the downwash w on the wing:

y dw

J(1—B*y*) dy

This relation results from the method of the hydrodynamic analogy used
in establishing the expression of % under a complex form. The above assump-
tion results from the suggestion of Kiichemann?" and Squire **) who use
a sudden variation of incidence at the point y=ec.

2. A wing of symmetrical thickness with the same slope variation as the
incidence in the first case (1), hence with the same source distribution, which
has the role of levelling the pressures on the lower surface, thus avoiding the
pressures to be equal and of opposite sign on the two wing surfaces.

3. A wing of symmetrical thickness having a mean slope which should
cancel the mean slope of the previous wing (2); for this reason we shall term
it compensatory wing. In this manner, the resultant wing has the mean
thickness equal to zero, as is the actual case. For this wing we shall consider
a source distribution which should give an axial velocity varying slightly along
the span, obtained through the expression:

q=kwo—ﬁ) (21)

Taking account of the boundary conditions, as well as of the u, special
conditions resulting from the effects of the vortex cornets, we obtain the axial

q (20)
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velocities corresponding to the three wings: u, for the wing (1), u, for the
wing (2) and u, for the wing (3). Their sum yields the total velocity:

u=u-+u-+u, (22)

Because the calculations are laborious and the expressions of the axial
velocities are lengthy, it is not the case to give either calculus details or the
expressions of the velocities.

For calculating the lift, only #, is to be taken into consideration; for
calculating the pressures, the total velocity u has to be considered.

It is of interest to compare the theoretical results obtained in the above
manner with the experimental ones. To this end, we have plotted in Fig. 7
the curve C, in terms of the ratio «// for various values of the parameter BI.
There is good agreement between theory and the tests carried out by O. A.
Ormerod and A. B. Haynes*?) on the basis of overall measurements.

It is more interesting to compare the pressures (Fig. 8 and Fig. 9). Indeed,

. § |
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FiG. 7 — Lift coefficient C, in terms of the incidence, for various values
of BI, on considering the flow separation. Experimental values are given
according to O. A. Ormerod and A. B. Haynes®*
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the theoretical diagrams representing the pressure coefficient C, according to
formula (4) are in surprising agreement with the tests carried out by W. H.
Michael??.

All these results are related to the position of the vortex nuclei and par-
ticularly to the abscissa which has been denoted by ¢ in Fig. 6a.

The scheme of the nucleus formation is given in the photograph (Fig. 6b)
obtained by Squire©®’,

Indeed, the vortex cornet turns into a main nucleus and, in another area,
into a layer of vortices which remains on the cornet or turns into a small tip
vortex. When the incidences are large, between the main nucleus and the
small tip one, there appears another inboard nucleus, the sense of which is
opposite to the former ones. A more profound analysis is not possible
because of the complexity of this phenomenon. Consequently we shall con-
sider only the simple scheme of Fig. 6a, assuming that the centre of the main
nucleus has the abscissa y=c¢ on the wing trace in the plane Oyz. For the case
Bl <1, the accurate study of the problem'23- 2¢) shows that ¢=/ for =0 and
that it varies inwards, according to a very complicated law; however, the
distance ¢ predicted by the theory differs from the one found experimentally.
The disagreement is still greater for larger B/ (0<B/<1).

Consequently we shall use a simple reasoning in the general case. Thus, for
instance, for very small incidences (x=0), the concentrated nucleus can be
considered as adhering to the upper surface of the wing, a fact that would lead,
no matter how small its intensity can be, to very high local velocities, incom-
patible with the actual effects of the flow separation. Therefore we have to
admit that, for «=0, we shall necessarily have ¢=/, in keeping with the
theoretical findings for B/<1.

For large incidences, assuming that the vortex filaments detaching from the
leading edge which are proportional to the wing breadth at these points, spin
around an axis which represents the line of the weight centre defined by the
abscissa

c=1%l (23)

We have noted above that the intensity of the vortex nucleus is somewhat
smaller than the total intensity (approx. 80%), the remaining part being in
the thin layer, which forms the cornet surface and gives rise to the tip vortex.
This distance can vary in such a case about the value

¢/l =06 (24)
according to the approximate indications given by the tests carried out up to

now, which are not however edifying, since the results differ by the authors
and the test conditions.
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Between these limit positions, by taking also account of the experimental
indications, we can admit an approximate law:

i 1

1 1+ 17(0)"? &

We have further assumed that the point of *‘maximum depression’ on the
upper surface corresponds just to yxe¢, a fact that has made possible a
convenient choice of the source distribution ¢ of the first component wing
defined above.

The method pointed out above can also be applied to other cases, as for
instance to the thin delta wing in uniform rotation around the axis Ox,, in
which case however the conical motion is of order, n=2 a fact which also
implies a corresponding method of approach, or to the trapezoidal wing with
one subsonic edge etc.

5. EXTENSION OF THE THEORY TO WINGS WiITH CURVED
LEADING EDGES

Although very general, the studies and results presented above are however
confined to wings with straight leading edges. But, the planforms of wings
employed in modern supersonic aviation generally have curved leading edges.

Consequently we shall introduce the notion of quasi-conical motions, with
the aid of which we can extend the results previously obtained to this category
of wings. To this effect, we shall proceed from the expressions of the axial
disturbance velocities given above and find the value of the conical potential
on the wing surface (Z=0) which will be denoted by ¢,. We shall apply the
following formula which has been established in our previous papers''*:

X5 | i,
wonefoll) sl o

This potential is function of x and of the geometrical parameters /, and /,'*,
which are constant for wings with straight leading edges.

By analogy with the lateral motion of fusiform slender bodies, where the
motion is considered to be approximately plane in each of the sections of the
slender bodies and, accordingly, one finds a quasi-plane potential which varies
along the axis Ox,, we shall also define in our case a quasi-conical potential
termed like this owing to the variation of /, and /, in terms of x,, a potential
that will be denoted by ¢*. The quasi-conical axial velocity derives from this
potential :

. _ 007

P o A
0x,

(27)
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Let us now perform an application to the flat triangular wing with subsonic
edges (Fig. 10a). For the conical motion proper (n=1), the axial disturbance
velocity is given by the expression

. -H L _2_!_112+(!1__I2),|; (.’8)
ab’x 2E(A) AN [Ul _J)([2+})]

where E(k) is the complete elliptical integral of the second kind having the
modulus k. The corresponding conical potential is

1 /[(by—x;)(by+x3)
o ak it E;k) R A N SR SE
If b, and b, do not vary linearly with x, (Fig. 10b), then the above conical
potential becomes a quasi-conical potential ¢*, from which the quasi-
conical axial velocity is resulting :

ﬂu* _ L qu_‘,‘ _ by(db,[dx;)+b,(db,/dx,)+x,[(db,/dx,)—(db,/dx,)]
aU, alU,dx, 2E \/[(by —x3)(by +x,)] - N
/[(by—x,)(b,+x,)] dE
— YN
E? dx, )

where E is now a constant which will be determined below.

It is further to be noticed that at an arbitrary point C, of co-ordinates
Xy, X5, the wing influence reduces to the portion delimited by the Mach
lines C,P, and C,P,. Taking account of the notations given in Fig. 10, we
can show that the tangents to the lines of the leading edges will be

db, ;-.dﬁ—'—=}.1 = cot y, (31a)
dx, ~ dé, -
db, df, .

= = A, = cot ) 31b
dx, - dg, Ay = COLY, (31b)

respectively.
With these notations, expression (30) becomes

u* _ lz).|+11;-2 +(/-.|—;.2)_l' '\‘l\,"x[(!l _)')([2+_r);| dﬁE

= - = — 32
aU, 2E.[(l;=y)l;+y)] E? dx, )
By an appropriate method we can determine the constant E.
In order to calculate the values 4,, 4,, as well as
By B2
==, g m—= 33)
=T e (
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we have to know &, and &,, which will be given by the expressions
E+Bf, = x,+Bx,, &, +Bf,=x,—Bx, (34)

With the aid of the above results we can pass to the calculation of pressures
in any section x,=const on ‘ogee’ shaped wings. Further, if we take also
account of the complex wing-body system, the above theory allows us to
approach the general problem of the wing with curved leading edges fitted
with a body of arbitrary shape.

6. AERODYNAMIC CHARACTERISTICS OF WINGS IN
SUPERSONIC-HYPERSONIC REGIME

For the moderate-hypersonic regime one can apply Lighthill’s theory2®’,
In yet another manner, the results obtained on the basis of the linearised
theory applied to wings with supersonic leading edges can be extended to high
regimes of the Mach number and great deflections of the undisturbed stream,
in a word, they can be extended to the moderate-hypersonic regime. To this
effect, we shall assume from the beginning that the stream deflection t (or the
dihedron angle of the wing leading edge) remains all the time in the framework
of the shock waves attached to the wedge, and the Mach number M does not
exceed an arbitrary limit over which the structure of the stream undergoes
radical changes. In this case, we have shown in our previous papers that the
pressure coefficient, deduced from the equations of the oblique shock waves,
is given by the following formula

C, y+l y+1
S ik 1 L) K2
m?sin?t 2 K\/I: +( ) ] A%

in which K, that will be termed unitary similarity parameter, is given by the
expression

K =M_msint, (m = Mo, ) (36)
VMEL-1)

This formula is valid both for the supersonic and the moderate-hypersonic
flow, therefore, over a wide range of incidences and Mach numbers. On the
other hand, it can be shown that the same formula is accurately valid also in
the case of expansion, where the values obtained are very close to those
corresponding to the Prandtl-Meyer expansion, such that it can be asserted
that (35) is a unitary formula for compression— expansion and for both
regimes — supersonic and moderate-hypersonic. It is to be noticed that for
very large values of K, (35) is reduced to Newton’s formula, provided we
obviously assume y—1, a fact that can be easily deduced from the equations
of the shock waves.
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The experiments confirm this formula surprisingly well, such that we can
consider it to be a basic formula for the subsequent developments. In Fig. 11,
theory and experiments are compared‘'®: 2%,

Thus, for instance, in the case of a leading edge which is sloped by the
angle y (as in the case of delta wings for example), the pressure coefficient is
yielded by the following relation:

2*C y+1 22 y+12\K2
! . : k
m?sin?t 2 +K \/[H'( 4 );__z:l 37

A= /(1—tan?ytan® p) = \/[1—(1/B*1?)] (38)

in which

As is known however, the deflection t is related to the axial disturbance
velocity u through the relation

u sint
= e = 39
U, Bi %)
whence
i K
—Mi-t‘--:Mxprisjn-r-=T (40)
U A A

- e}

Finally, formula (37) will be written in terms of u:

+1 2 ‘ y+ 1\? 2
Mi_c,,=’”2(Mi i ) —2(M%, .U”.-)\/[w("—‘1 ) (M?, [;—‘)] (41)

We can apply the same reasoning as above to a wing constituted of a
conical surface with the vertex at the origin and obtain, for each generatrix,
the pressure coefficient given by the above formula in terms of the axial
disturbance velocity u, which is obtained on the basis of the linearised theory.

We shall further consider that formula (41) is valid for any conical motion
of order one or of a higher order, for which u is easily determined by means of
the ordinary methods. Indeed, at a point on the leading edge, the local motion
conditions are the same as those used for establishing formula (37). Both in
the case of the compression behind the shock wave, due to the positive
dihedron of the leading edge, and in the case of expansion, when the deflection
upon the leading edge is negative, formula (41) records this variation in an
accurate manner. After this, the stream undergoes small changes which can
be considered isentropic, such that this formula is valid even in the interior of
the Mach cone. The experimental verifications are edifying in this respect.

Thus, we have reproduced in Fig. 12 the experiments carried out by
Wilby*®’ on a wing having the slope constant also at M =7-35, experiments
which are in good agreement with the theoretical data in which account has
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been also taken of the influence of the boundary layer since this latter one
alters the shape of the wing surface.

We shall remark however that, for negative angles, the agreement is less
fair, owing to the thickening of the boundary layer which delays the expansion
or diminishes it.

In Fig. 13 we have reproduced the experiments carried out by Landahl,
Drougge, Beverly'?3) at M_ =4 on a wing of symmetrical thickness having a
parabola arc as directrix. In this case too, the agreement between theory and
experiment is very good. As a matter of fact, a series of other experiments
confirm the theory presented above.

Obviously, the overall aerodynamic characteristics (lift, wave drag co-
efficients etc.) also observe this confirmation, as indicated in Fig. 14, in which
the tests taken from ref. 28 have been made at M, =69.

The theories and formula which were presented above have been confirmed
experimentally, such that the results obtained can be applied with a good
approximation to the calculus of pressures on wings.

7. CONCLUSIONS

The fair agreement between the values calculated according to the theore-
tical formulae and the experiments carried out over a wide range of incidences
and Mach numbers enables one to conclude that the formulae established
above are valid for all the stages of the motion around lifting systems.
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